Phytotoxicity of Major Constituents of the Volatile Oil from Leaves of *Artemisia scoparia* Waldst. & Kit.

Harminder Pal Singh^a, Shalinder Kaur^b, Sunil Mittal^a, Daizy R. Batish^{b,*}, and Ravinder K. Kohli^{a,b}

- ^a Centre for Environment and Vocational Studies, Department of Botany, Panjab University, Chandigarh 160 014, India
- ^b Department of Botany, Panjab University, Chandigarh 160 014, India. E-mail: daizybatish@yahoo.com
- * Author for correspondence and reprint requests
- Z. Naturforsch. 63 c, 663–666 (2008); received March 6/April 7, 2008

The phytotoxicity of the three major monoterpene constituents of the essential oil from leaves of *Artemisia scoparia* Waldst. & Kit. (redstem wormwood) was investigated. GC/GC-MS analysis revealed that the essential oil (yield 0.84%) is a complex mixture containing 19 monoterpenes, 7 sesquiterpenes and 15 other compounds – aliphatic alcohols, ketones, aromatic hydrocarbons and esters. The three major monoterpenes were β -myrcene (30.2%), p-cymene (12.8%) and dl-limonene (12.4%). The essential oil and the three monoterpenes exhibited phytotoxicity and reduced germination, seedling growth, chlorophyll content and percent respiration of *Avena sativa* and *Triticum aestivum* in a dose-response manner. The inhibitory effect of monoterpenes was comparatively smaller than of the crude essential oil and β -myrcene was most toxic followed by p-cymene, whereas limonene was least toxic. The study suggests that A. scoparia oil and β -myrcene can be explored for phytotoxicity against weeds.

Key words: Artemisia scoparia, β -Myrcene, Phytotoxicity